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This paper is concerned with the linear inviscid stability of parallel flow over a 
compliant or flexible wall. A Fjmtoft-type criterion providing a necessary condition for 
instability in terms of the basic velocity field and its second-order derivative is 
established. This criterion assumes a simple form for basic flows with zero velocity at 
the wall. For the latter flows, another necessary condition for stability is given. The 
results are helpful in the search for unstable modes in flow over a compliant wall. 

Yeo & Dowling (1987) have shown that the semicircle theorem of Howard (1961) 
and a result of Hariland (1953) may be extended to parallel inviscid flow over a flexible 
or compliant wall, albeit in modified form. The semicircle theorem provides a bound 
for the phase speed c of an unstable mode in the complex c-plane, while the result of 
Hailand gives a bound on its temporal amplification rate. Yeo & Dowling employed 
a variational Lagrangian representation for the dynamics of the flexible wall. This 
ensures that their results are applicable to a large class of (passive) compliant walls. 
Rayleigh’s famous inflexion theorem is, however, invalid for compliant walls. Similarly, 
Fjerrtoft’s (1950) extension of Rayleigh’s theorem is also not valid. In this note, two 
results concerning the inviscid stability of parallel flow over a compliant wall are 
derived. They are numbered sequentially after those of Yeo & Dowling (1987) as 
Propositions 4 and 5.  The propositions provide necessary conditions for the linear 
instability of the flow in terms of the basic velocity profile U ( y )  and its derivatives. 
Proposition 4 may be regarded as a form of Fjarrtoft criterion for flows over a 
compliant wall. For the important class of basic flows with zero velocity at the wall 
(U, = 0), Proposition 4 assumes a particularly simple form. For this class of flow, a 
further criterion, which involves the velocity gradient at the wall ( Uh), is given by 
Proposition 5.  These results reveal the importance of U, and UL in compliant-wall flow 
stability. 

Let U(y)  be an inviscid incompressible two-dimensional parallel flow over a 
compliant wall. A small-amplitude normal-mode perturbation of U ( y )  has the form 
(u, v) = (a/i3yy, -a/ax) $(y )  exp [i(ax- wt) ] ,  where a and w are the real x-wavenumber 
and the complex frequency of the perturbation respectively. The disturbance function 
$ ( y )  obeys the well-known Rayleigh equation (see Drazin & Reid 1981) 

c = w / a  is the complex phase speed of the perturbation. We now multiply (1) by $* 
(superscript * denotes the complex conjugate) and integrate the resultant equation 
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from the mean flow-compliant wall interface at y = yU to the upper limit of the flow 
domain at y u ;  y u  may either be m for a semi-bounded flow or a finite y-coordinate if 
the flow is bounded there by a rigid surface. For either case, integration by parts yields 

where the subscript w indicates evaluation of the function at y,. The upper-limit term 
#*#' at yr, is zero. This is because the disturbance is assumed to decay to zero far away 
from the wall if the flow domain is semi-infinite; and $(y,) = 0 if there is a rigid wall 
at yu. The surface term - $: $5 is governed both by the dynamics of the compliant wall 
and its interaction with the flow at the mean interface. 

For a small-amplitude perturbation, the relevant dynamics of the wall or the surface 
may be described by a linear relation between the perturbation normal stress r~ acting 
on the wall and the resultant vertical displacement 7 of the surface from its original 
undisturbed position along y = yZ. These quantities have the same normal-mode form 
as the flow perturbation, i.e. 

= 2 e l ( s z - w t )  and = f el(ax-W 

where 2 and + are the complex amplitudes. A realistic compliant wall necessarily 
possesses the qualities of elasticity, mass inertia and damping. Yeo & Dowling have 
shown that for passive compliant walls 

( 3 )  

where E, I and D are amplitude-normalized real-valued positive-definite integrals. 
These integrals are associated with the stored energy (due to elastic behaviour), kinetic 
energy and dissipation (due to damping) of the perturbation mode in the wall 
respectively. They are in general functions of a, (L) and wall properties. Equation (3) was 
derived from a variational Lagrangian formulation of the wall dynamics, and is 
applicable to a large class of compliant walls, including solid-layered walls, plate 
surfaces and membranes. 

The interaction between the flow and the wall is governed by two conditions: the 
continuity of normal velocity and stress. The linearized form of these conditions is 

c? = (E-  wzI -  iwD) f ,  

where pU: is the complex amplitude of the flow perturbation pressure p at the mean 
interface. Using ( 3 )  and (4), we have 

( 5 )  
liir 

(U, - c)  ' 
$: #; = [(c* - U,) (E-  wz I-iwDj + Uh I U, - el'] ~ 

which is required for use with (2). 
We now multiply (2) by (aU,-o). Taking the imaginary part then yields 

= [ -wiE+wia2I((2c,  q(;-I~l')++'D(c, ~ i ~ - - l ~ l z ) ]  l f l z .  (6) 
The wall-related integrals E, I and D on the right-hand side of (6) are all positive. For 
a temporally unstable mode (ai > Oj, the right-hand side of (6) is negative if the basic 
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flow velocity at the wall U, and the propagating real phase speed of the mode c, are 
of opposite signs. Hence for flow with qo d 0, the right-hand side of (6) is negative for 
an unstable mode with c,. 2 0. For such an instability mode to exist, the integral on the 
left-hand side must also be negative. This implies then that the integrand quantity 
U"(U- UuJ must necessarily be negative in some finite sub-interval(s) of [y , ,y ,] .  The 
same condition on the integrand is applicable to unstable upstream-propagating modes 
(c, d 0), when the basic flow has wall velocity U, 2 0. These lead us to: 

PROPOSITION 4. For an inviscid parallel /?ow over a compliant wall with U, 6 0 (U, 2 
0), a temporally unstable mode with c,. 3 0 (c, < 0)  can exist only if U"( U -  qD) < 0 
somewhere in the Jrow. 

Proposition 4 may be regarded as a form of Fjerrtoft's theorem. The basic velocity 
at an inflexion point, U,, in the original Fjerrtoft theorem is now replaced by the basic 
velocity at the wall, U,, which can be seen to play an important role in the new 
criterion. The criterion is useful mainly for velocity profiles with no-zero U". For a 
uniform flow, with U = U, > 0 say, Proposition 4 predicts that there are no unstable 
modes with c, < 0, which is in agreement with the bound given by the modified 
semicircle theorem of Yeo & Dowling (1987). Proposition 4 has the following simple 
consequence for basic flows with U, = 0: 

with U, = 0 to he unstable is that U"U < 0 somewhere in the flow. 
COROLLARY. A necessary condition .for an inviscid parallel flow over a compliant wall 

This is a particularly important case because all real basic flows over a wall, be it 
compliant or rigid, necessarily have qAj = 0. The corollary is therefore relevant to the 
inviscid instability of real flows. Cases with C', $: 0 are merely idealizations which 
substitute a thin shear layer by a vortex sheet for simplicity of analysis. 

For flows with U ( y )  > 0, except at the wall where U ,  = 0, the corollary implies that 
U" < 0 somewhere for an instability to exist. An example is given by the Blasius 
velocity profile, which is known to be unstable when the wall becomes sufficiently 
compliant. The converse equivalent of the corollary states that a sufficient condition 
for a flow (U, = 0) to be linearly stable is that UU" 3 0 everywhere in the flow. Thus, 
a plane Couette flow over a compliant wall with V, = 0 is linearly stable since it has 
U" = 0 everywhere. We may further note that a flow which is inviscidly stable over a 
compliant wall will remain stable when the wall is rigid. This is because a linearly stable 
flow over a compliant wall must have UU" 2 0 everywhere. This condition generally 
excludes the occurrence of an inflexion point within the flow (the exceptions being flows 
with an inflexion point in the basic velocity profile occurring at an interior point where 
U is also zero and such that the product UU" 2 0 across the point). The occurrence of 
inflexion point(s) in the velocity profile is a necessary condition for the inviscid 
instability of the flow over a rigid wall, according to Rayleigh's inflexion theorem. 

A further result for compliant walls may be deduced by considering the imaginary 
part of (2): 

where the flow is again assumed to have U, = 0. For a flow which has UL, 2 0, the 
right-hand side of (7) is negative for unstable modes with positive phase speed 
(c, > 0). Such an instability can exist only if U" < 0 over some finite sub-interval(s) 
in [y,,yu]. An equivalent result is applicable for cases with Uh < 0. Hence: 
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PROPOSITION 5 .  For an inviscidflow with qa = 0 and U7:) 2 0 ( U7Lb < 0)  over a compliant 
wall, an unstable mode with c, > 0 (c, < 0 )  can exist only $U” < 0 (U” > 0)  somewhere 
in thejlow. 

This result indicates that for flows over a compliant wall with &;, = 0 and 6% > 0, 
the instability wave modes with c, > 0 are in some sense related to the existence of 
negative U ” .  When U, + 0, the right-hand side of (7) becomes highly complex and no 
useful deductions have been forthcoming. The complexity of this latter case may be 
attributed to the fact that an idealized vortex sheet at a deformable surface may be 
unstable on its own merit quite independently of the existence of non-zero U“ 
elsewhere in the flow. The stability or instability of this vortex sheet is closely coupled 
to the specific properties of the wall, which partially explains the absence of a simple 
result for the U, =t= 0 case. Again we should emphasize that the wall vortex sheet is in 
reality a very thin shear layer with qd = 0, whose instability, if any, is related to non- 
zero U“, subject to the preceding corollary and Proposition 5. 

The magnitude of wall displacement /+I tends to zero in the limit of an infinitely stiff 
(rigid) wall. For any finite normalization of the flow perturbation, Eli& Il+l, D are 
at most of O(1) according to (3). The terms on the right-hand sides of (6) and (7) are 
then of O(lij) and thus vanish for a rigid wall. Equation (7) then yields Rayleigh’s 
inflexion theorem. In the absence of a perturbation interaction between the flow and a 
rigid wall, the velocity U, on the left-hand side of (6) need no longer have to be the flow 
velocity at the wall, and may be a freely selected real number. If U, is replaced by U, 
(the velocity at a point of inflexion), then Fjmtoft’s extension of Rayleigh’s theorem 
is also obtained (see Drazin & Reid 1981). 
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